Selasa, 20 Januari 2009

Physics (Greek: physis – φύσις meaning "nature") is the natural science which examines basic concepts such as energy, force, and spacetime and all that derives from these, such as mass, charge, matter[1] and its motion.[2] More broadly, it is the general analysis of nature, conducted in order to understand how the world and universe behave.[3][4]

Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy.[5] Over the last two millennia, physics had been considered synonymous with philosophy, chemistry, and certain branches of mathematics and biology, but during the Scientific Revolution in the 16th century, it emerged to become a unique modern science in its own right.[6] However, in some subject areas such as in mathematical physics and quantum chemistry, the boundaries of physics remain difficult to distinguish.

Physics is both significant and influential, in part because advances in its understanding have often translated into new technologies, but also because new ideas in physics often resonate with the other sciences, mathematics and philosophy. For example, advances in the understanding of electromagnetism led directly to the development of new products which have dramatically transformed modern-day society (e.g., television, computers, and domestic appliances); advances in thermodynamics led to the development of motorized transport; and advances in mechanics inspired the development of the calculus.Scope and goals
This parabola-shaped lava flow illustrates Galileo's law of falling bodies as well as blackbody radiation – you can tell the temperature from the color of the blackbody.
Cassiopeia A – a spherically symmetric remnant of the 1680 supernova

Physics covers a wide range of phenomena, from the smallest sub-atomic particles, to the largest galaxies. Included in this are the very most basic objects from which all other things are composed of, and therefore physics is sometimes said to be the "fundamental science".[7]

Physics aims to describe the various phenomena that occur in nature in terms of simpler phenomena. Thus, physics aims to both connect the things we see around us to root causes, and then to try to connect these causes together in the hope of finding an ultimate reason for why nature is as it is. For example, the ancient Chinese observed that certain rocks (lodestone) were attracted to one another by some invisible force. This effect was later called magnetism, and was first rigorously studied in the 17th century. A little earlier than the Chinese, the ancient Greeks knew of other objects such as amber, that when rubbed with fur would cause a similar invisible attraction between the two. This was also first studied rigorously in the 17th century, and came to be called electricity. Thus, physics had come to understand two observations of nature in terms of some root cause (electricity and magnetism). However, further work in the 19th century revealed that these two forces were just two different aspects of one force – electromagnetism. This process of "unifying" forces continues today (see section Current research for more information).

[edit] The scientific method

Physics uses the scientific method to test the validity of a physical theory, using a methodical approach to compare the implications of the theory in question with the associated conclusions drawn from experiments and observations conducted to test it. Experiments and observations are to be collected and matched with the predictions and hypotheses made by a theory, thus aiding in the determination or the validity/invalidity of the theory.

Theories which are very well supported by data and have never failed any empirical test are often called scientific laws, or natural laws. Of course, all theories, including those called scientific laws, can always be replaced by more accurate, generalized statements if a disagreement of theory with observed data is ever found.[8]

[edit] Theory and experiment

Main articles: Theoretical Physics and Experimental Physics

The astronaut and Earth are both in free-fall
Dispersion of light by a prism
Lightning is electric current

The culture of physics has a higher degree of separation between theory and experiment than many other sciences. Since the twentieth century, most individual physicists have specialized in either theoretical physics or experimental physics. In contrast, almost all the successful theorists in biology and chemistry (e.g. American quantum chemist and biochemist Linus Pauling) have also been experimentalists, although this is changing as of late.

Theorists seek to develop mathematical models that both agree with existing experiments and successfully predict future results, while experimentalists devise and perform experiments to test theoretical predictions and explore new phenomena. Although theory and experiment are developed separately, they are strongly dependent upon each other. Progress in physics frequently comes about when experimentalists make a discovery that existing theories cannot explain, or when new theories generate experimentally testable predictions, which inspire new experiments. In the absence of experiment, theoretical research can go in the wrong direction; this is one of the criticisms that has been leveled against M-theory, a popular theory in high-energy physics for which no practical experimental test has ever been devised. Physicists who work at the interplay of theory and experiment are often called phenomenologists.

Theoretical physics is closely related to mathematics, which provides the language of physical theories, and large areas of mathematics, such as calculus, have been invented specifically to solve problems in physics. Theorists may also rely on numerical analysis and computer simulations. The fields of mathematical and computational physics are active areas of research. Theoretical physics has historically rested on philosophy and metaphysics; electromagnetism was unified this way.[9] Beyond the known universe, the field of theoretical physics also deals with hypothetical issues,[10] such as parallel universes, a multiverse, and higher dimensions. Physicists speculate on these possibilities, and from them, hypothesize theories.

Experimental physics informs, and is informed by, engineering and technology. Experimental physicists involved in basic research design and perform experiments with equipment such as particle accelerators and lasers, whereas those involved in applied research often work in industry, developing technologies such as magnetic resonance imaging (MRI) and transistors. Feynman has noted that experimentalists may seek areas which are not well explored by theorists.[citation needed]

[edit] Relation to mathematics and the other sciences

In the Assayer (1622), Galileo noted that mathematics is the language in which Nature expresses its laws.[11] Most of the experimental results in physics are numerical measurements and theories in physics use mathematics to give numerical results to match these measurements. Physics relies on mathematics to provide the logical framework in which physical laws can be precisely formulated and predictions quantified. Whenever analytic solutions of equations are not feasible, numerical analysis and simulations can be utilized. Thus, scientific computation is an integral part of physics, and the field of computational physics is an active area of research.

A key difference between physics and mathematics is that since physics is ultimately concerned with descriptions of the material world, it tests its theories by comparing the predictions of its theories with data procured from observations and experimentation, whereas mathematics is concerned with abstract patterns, not limited by those observed in the real world. The distinction, however, is not always clear-cut. There is a large area of research intermediate between physics and mathematics, known as mathematical physics.

Physics is also intimately related to many other sciences, as well as applied fields like engineering and medicine. The principles of physics find applications throughout the other natural sciences as some phenomena studied in physics, such as the conservation of energy, are common to all material systems. Other phenomena, such as superconductivity, stem from these laws, but are not laws themselves because they only appear in some systems. Physics is often said to be the "fundamental science" (chemistry is sometimes included), because each of the other disciplines (biology, chemistry, geology, material science, engineering, medicine etc.) deals with particular types of material systems that obey the laws of physics.[7] For example, chemistry is the science of collections of matter (such as gases and liquids formed of atoms and molecules) and the processes known as chemical reactions that result in the change of chemical substances. The structure, reactivity, and properties of a chemical compound are determined by the properties of the underlying molecules, which can be described by areas of physics such as quantum mechanics (called in this case quantum chemistry), thermodynamics, and electromagnetism.